Документ подписан плостой электронной подписыю и высшего образования Российской Федерации Информация о владельце:
ФИО: Кандрашин Редеральное государственное автономное образовательное учреждение

Должность: И.о. ректора ФГАОУ ВО «Самарский государств**выеще болобразования**

университет» «Самарский государственный экономический университет»

Дата подписания: 29.10.2025 14:29:09 Уникальный программный ключ:

2db64eb9605ce27edd3b8e8fdd32c70e0674ddd2

Институт национальной и мировой экономики

Кафедра прикладной информатики

УТВЕРЖДЕНО

Ученым советом Университета (протокол № 10 от 22 мая 2025 Γ .)

РАБОЧАЯ ПРОГРАММА

Наименование дисциплины Б1.В.ДЭ.04.01 Технологии распределенных

реестров

Основная профессиональная 01.03.05 Статистика программа

образовательная программа Информационные системы на финансовых

рынках

Содержание (рабочая программа)

Стр.

- 1 Место дисциплины в структуре ОП
- 2 Планируемые результаты обучения по дисциплине, обеспечивающие достижение планируемых результатов обучения по программе
- 3 Объем и виды учебной работы
- 4 Содержание дисциплины
- 5 Материально-техническое и учебно-методическое обеспечение дисциплины
- 6 Оценочные материалы по дисциплине

Целью изучения дисциплины является формирование результатов обучения, обеспечивающих достижение планируемых результатов освоения образовательной программы.

1. Место дисциплины в структуре ОП

Дисциплина <u>Технологии</u> <u>распределенных</u> <u>реестров</u> входит в часть, формируемая участниками образовательных отношений (дисциплина по выбору) блока Б1.Дисциплины (модули)

Последующие дисциплины по связям компетенций: Анализ и оценка финансовых рисков проекта, Проектный практикум, Портфельное инвестирование, Оптимизация инвестиционного портфеля

2. Планируемые результаты обучения по дисциплине, обеспечивающие достижение планируемых результатов обучения по программе

Изучение дисциплины <u>Технологии</u> распределенных реестров в образовательной программе направлено на формирование у обучающихся следующих компетенций:

Профессиональные компетенции (ПК):

ПК-5 - Способен осуществлять административное сопровождение проектов в области инновационных финансовых технологий

Планируемые	Планируемые результ	Планируемые результаты обучения по дисциплине			
результаты					
обучения по					
программе					
ПК-5	ПК-5.1: Знать:	ПК-5.2: Уметь:	ПК-5.3: Владеть (иметь		
			навыки):		
	ключевые положения	управлять процессом	навыками административной		
	процесса	реализации проектов в	работы и сопровождения		
	администрирования	области инновационных	проектов в области		
	сопровождения	финансовых технологий	инновационных финансовых		
	проектов в области		технологий		
	инновационных				
	финансовых				
	технологий				

3. Объем и виды учебной работы

Учебным планом предусматриваются следующие виды учебной работы по дисциплине:

Очная форма обучения

Duran makana makama	Всего час/ з.е.
Виды учебной работы	Сем 6
Контактная работа, в том числе:	36.15/1
Занятия лекционного типа	18/0.5
Занятия семинарского типа	18/0.5
Индивидуальная контактная работа (ИКР)	0.15/0
Самостоятельная работа:	17.85/0.5
Промежуточная аттестация	18/0.5
Вид промежуточной аттестации:	
Зачет	Зач
Общая трудоемкость (объем части образовательной	
программы): Часы	72
Зачетные единицы	2

4. Содержание дисциплины

4.1. Разделы, темы дисциплины и виды занятий:

Тематический план дисциплины <u>Технологии</u> <u>распределенных</u> <u>реестров</u> представлен в таблице.

Разделы, темы дисциплины и виды занятий Очная форма обучения

			Контактная работа			В	Планируемые
№ п/п	Наименование темы (раздела) дисциплины	Лекции	Занятия семинарского типа занятия	ИКР	ГКР	Самостоятельная работа	результаты обучения в соотношении с результатами обучения по образовательной программе
1.	Фундаментальные принципы и архитектуры распределённых реестров	8	8	0,075		12	ПК-5.1, ПК-5.2, ПК -5.3
2.	Отраслевые применения распределённых реестров	10	10	0,075		5.85	ПК-5.1, ПК-5.2, ПК -5.3
	Контроль			18			
	Итого	18	18	0.15		17.85	

4.2 Содержание разделов и тем

4.2.1 Контактная работа

Тематика занятий лекционного типа

	тематика занятии лекционного типа					
№п/п	Наименование темы (раздела) дисциплины	Вид занятия лекционного типа*	Тематика занятия лекционного типа			
1.	Фундаментальные принципы и архитектуры распределённых	лекция	Эволюция распределённых реестров, криптографические основы (хешфункции, коллизии, дерево Меркла, эллиптические кривые)			
	реестров	лекция	Архитектура распределённых реестров, протоколы консенсуса			
		лекция	Механизмы масштабирования (L1, L2)			
		лекция	Обеспечение приватности, zk-протоколы, кольцевые подписи			
2.	Отраслевые	лекция	Язык программирования Solidity, оракулы			
	применения распределённых реестров	лекция	Корпоративные фреймворки			
		лекция	Децентрализованные финансы (DeFi), центральные цифровые валюты (CBDC)			
		лекция	Токенизация			
		лекция	Экономика машин			

^{*}лекции и иные учебные занятия, предусматривающие преимущественную передачу учебной информации педагогическими работниками организации и (или) лицами, привлекаемыми организацией к реализации образовательных программ на иных условиях, обучающимся

Тематика занятий семинарского типа

№п/п	Наименование темы (раздела) дисциплины	Вид занятия семинарского типа**	Тематика занятия семинарского типа
	Фундаментальные принципы и	практическое занятие	Разбор блока публичного блокчейна, IPFS
	архитектуры	практическое занятие	Знакомство с MetaMask
		практическое занятие	Знакомство с Remix IDE

	распределённых реестров	практическое занятие	Изучение типов, переменных и событий в Solidity
2.	Отраслевые	практическое занятие	Знакомство с Hardhat и OpenZeppelin
	применения	практическое занятие	Разбор стандарта ERC-20
	распределённых	практическое занятие	Разбор стандарта ERC-721
	реестров	практическое занятие	Разбор стандарта ERC-1155
		практическое занятие	Разбор стандарта ERC-4973

^{**} семинары, практические занятия, практикумы, лабораторные работы, коллоквиумы и иные аналогичные занятия

Иная контактная работа

При проведении учебных занятий СГЭУ обеспечивает развитие у обучающихся навыков командной работы, межличностной коммуникации, принятия решений, лидерских качеств (включая при необходимости проведение интерактивных лекций, групповых дискуссий, ролевых игр, тренингов, анализ ситуаций и имитационных моделей, преподавание дисциплин (модулей) в форме курсов, составленных на основе результатов научных исследований, проводимых организацией, в том числе с учетом региональных особенностей профессиональной деятельности выпускников и потребностей работодателей).

Формы и методы проведения иной контактной работы приведены в Методических указаниях по основной профессиональной образовательной программе.

4.2.2 Самостоятельная работа

	· · · · · · · · · · · · · · · · · · ·	
№п/п	Наименование темы (раздела) дисциплины	Вид самостоятельной работы ***
1.	Фундаментальные принципы и архитектуры распределённых реестров	подготовка докладаподготовка электронной презентациитестирование
2.	Отраслевые применения распределённых реестров	подготовка докладаподготовка электронной презентациитестирование

^{***} самостоятельная работа в семестре, написание курсовых работ, докладов, выполнение контрольных работ

5. Материально-техническое и учебно-методическое обеспечение дисциплины

5.1 Литература:

Основная литература

1. Марасанов А.М. Распределенные базы и хранилища данных / А.М. Марасанов, Н.П. Аносова, О.О. Бородин, Е.С. Гаврилов. - Москва : Национальный Открытый Университет ИНТУИТ, 2024. - 254 с. - ISBN intuit483. - URL: https://ibooks.ru/bookshelf/394510/reading

Дополнительная литература

1. Карпова Т.С. Базы данных: модели, разработка, реализация / Т.С. Карпова. - Москва : Национальный Открытый Университет ИНТУИТ, 2024. - 403 с. - ISBN intuit062. - URL: https://ibooks.ru/bookshelf/394105/reading

Литература для самостоятельного изучения

1. Прохоров В. В., Рожнов И. П. «Цифровые финансовые активы» — Юрайт, 2025, 298 с., ISBN 978-5-534-21399-7

5.2. Перечень лицензионного программного обеспечения

- 1. Astra Linux Special Edition «Смоленск», «Орел»; РедОС ; ОС "Альт Рабочая станция" 10; ОС "Альт Образование" 10
- 2. МойОфис Стандартный 2, МойОфис Образование, Р7-Офис Профессиональный, МойОфис Стандартный 3, МойОфис Профессиональный 3

5.3 Современные профессиональные базы данных, к которым обеспечивается доступ обучающихся

- 1. Профессиональная база данных «Информационные системы Министерства экономического развития Российской Федерации в сети Интернет» (Портал «Официальная Россия» http://www.gov.ru/)
- 2. Государственная система правовой информации «Официальный интернет-портал правовой информации» (http://pravo.gov.ru/)
- 3. Профессиональная база данных «Финансово-экономические показатели Российской Федерации» (Официальный сайт Министерства финансов РФ https://www.minfin.ru/ru/)
- 4. Профессиональная база данных «Официальная статистика» (Официальный сайт Федеральной службы государственной статистики http://www.gks.ru/

5.4. Информационно-справочные системы, к которым обеспечивается доступ обучающихся

- 1. Справочно-правовая система «Консультант Плюс»
- 2. Справочно-правовая система «ГАРАНТ-Максимум»

5.5. Специальные помещения

5.5. Специальные помещения	
Учебные аудитории для проведения	Комплекты ученической мебели
занятий лекционного типа	Мультимедийный проектор
	Доска
	Экран
Учебные аудитории для проведения	Комплекты ученической мебели
практических занятий (занятий	Мультимедийный проектор
семинарского типа)	Доска
	Экран
	Компьютеры с выходом в сеть «Интернет» и ЭИОС
	СГЭУ
Учебные аудитории для групповых и	Комплекты ученической мебели
индивидуальных консультаций	Мультимедийный проектор
	Доска
	Экран
	Компьютеры с выходом в сеть «Интернет» и ЭИОС
	СГЭУ
Учебные аудитории для текущего	Комплекты ученической мебели
контроля и промежуточной аттестации	Мультимедийный проектор
	Доска
	Экран
	Компьютеры с выходом в сеть «Интернет» и ЭИОС
	СГЭУ
Помещения для самостоятельной работы	Комплекты ученической мебели
	Мультимедийный проектор
	Доска
	Экран
	Компьютеры с выходом в сеть «Интернет» и ЭИОС
-	СГЭУ
Помещения для хранения и	Комплекты специализированной мебели для
профилактического обслуживания	хранения оборудования
оборудования	

6. Фонд оценочных средств по дисциплине Технологии распределенных реестров:

6.1. Контрольные мероприятия по дисциплине

Вид контроля	Форма контроля	Отметить нужное знаком «+»
Текущий контроль	Оценка докладов	+
	Устный/письменный опрос	_
	Тестирование	+
	Практические задачи	+
Промежуточный контроль	Зачет	+

Порядок проведения мероприятий текущего и промежуточного контроля определяется Методическими указаниями по основной профессиональной образовательной программе высшего образования; Положением о балльно-рейтинговой системе оценки успеваемости обучающихся по основным образовательным программам высшего образования — программам бакалавриата, программам специалитета, программам магистратуры в федеральном государственном автономном образовательном учреждении высшего образования «Самарский государственный экономический университет».

6.2. Планируемые результаты обучения по дисциплине, обеспечивающие достижение планируемых результатов обучения по программе

Профессиональные компетенции (ПК):

ПК-5 - Способен осуществлять административное сопровождение проектов в области инновационных финансовых технологий

Планируемые	Планируемые результаты обучения по дисциплине			
результаты обучения по				
программе				
программе	ПК-5.1: Знать:	ПК-5.2: Уметь:	ПК-5.3: Владеть (иметь навыки):	
	ключевые положения процесса администрирования сопровождения проектов в области инновационных финансовых технологий	управлять процессом реализации проектов в области инновационных финансовых технологий	навыками административной работы и сопровождения проектов в области инновационных финансовых технологий	
Пороговый	Перечисляет ≥ 10 базовых понятий DLT (блок, смарт-контракт, PoW/PoS, токен, роллап); Описывает жизненный цикл смарт-контракта: «код \rightarrow аудит \rightarrow деплой \rightarrow сопровождение».	Разворачивает тестовую сеть (Ganache); Модифицирует готовый ERC-20 и деплоит его в тестнет.	Заполняет шаблон отчёта о тестировании для согласования его с руководителем проекта.	
Стандартный (в дополнение к пороговому)	Объясняет различия между UTXO и Account; Объясняет, что такое KYC и AML.	Проектирует и пишет собственный смарт-контракт по ТЗ «ипотечный залог» (приём залога, погашение, штраф).	Дает оценку и рекомендации к техническому заданию по создаю смарт-контактов	

Повышенный	Критически сравнивает	Оптимизирует газ для	Принимает решение об
(в дополнение	≥ 2 протокола	снижения расхода по	используемых в проекте
к пороговому,	консенсуса;	сравнению с базовой	технологиях
стандартному)	Прогнозирует риски и	версией.	распределенного реестра
	предлагает		
	архитектурные		
	решения.		

6.3. Паспорт оценочных материалов

№ п/п	Наименование темы (раздела) дисциплины	Контролируемые планируемые	Вид контроля/используемые оценочные средства	
		результаты обучения в соотношении с результатами обучения по программе	Текущий	Промежуточный
1.	Фундаментальные принципы и архитектуры распределённых реестров	5.3	Оценка докладов Устный/письменный опрос Тестирование	Зачет
2.	Отраслевые применения распределённых реестров		Оценка докладов Тестирование Практические задачи	Зачет

6.4. Оценочные материалы для текущего контроля

Примерная тематика докладов

Примерная тематика докладов Раздел дисциплины Темы		
Темы		
1. Базовые принципы распределённых реестров: консенсус,		
децентрализация и неизменность (обзор ключевых свойств DLT,		
различия между блокчейном и традиционными базами данных).		
2. Механизмы консенсуса в распределённых реестрах: от Proof of Work		
до Proof of Stake и Beyond.		
3. Архитектура блокчейна: как устроены блоки, хэши и цепочки?		
4. Смарт-контракты и децентрализованные приложения (DApps).		
5. Проблемы масштабируемости в блокчейне: шардинг, L2-решения и		
сайдчейны: обзор Lightning Network, Rollups, Plasma и других подходов.		
6. Приватность в распределённых реестрах: анонимность/ прозрачность		
7. Гибридные и направленные ациклические графы (DAG) в DLT		
8. Межсетевые взаимодействия (Interoperability): как связать разные		
блокчейны?		
9. Квантовые компьютеры и угрозы для блокчейна: будущее		
криптографии.		
10. Практические применения DLT: от криптовалют до цифровых		
идентификаторов.		
1. Блокчейн в платежных системах, децентрализованные финансы (DeFi)		
и CBDC.		
2. Трекинг товаров, борьба с контрафактом и повышение прозрачности.		
3. Управление медицинскими данными, верификация рецептов и		
клинические исследования.		
4. Р2Р-торговля электричеством, децентрализованные энергосети и		
"зелёные" сертификаты.		
5. Цифровые паспорта, электронное голосование и земельные реестры.		
6. Смарт-контракты для автоматизации договоров и защита цифровых		
прав.		

7. Верификация дипломов, защита от подделок и цифровые портфолио. 8. NFT для цифрового искусства, авторские права и монетизация		
контента.		
9. Децентрализованные сети передачи данных и борьба с мошенничеством.		
10. Прослеживаемость продуктов питания и управление		
сельхозданными.		
11. Блокчейн в V2X (автомобильные сети) и истории обслуживания.		
12. Контроль подлинности лекарств и цепочки поставок вакцин.		

Задания для тестирования/ практические задания по дисциплине для оценки сформированности компетенции

ПК-5 -	Способен осуществлять административное сопровождение про	ектов в области инновационных
	совых технологий	
№ п/п	Задание	Ключ к заданию / Эталонный ответ
	Какие механизмы обеспечивают неизменяемость записей в	4
	распределённом реестре и позволяют учитывать это свойство	
	при административном сопровождении проектов в сфере	
	инновационных финансовых технологий?	
	1. Централизованный журнал изменений	
	2. Компрессия блоков без контроля целостности	
	3. Шифрование симметричным ключом	
	4. Криптографическое связывание блоков через хэши и	
	ссылки на предыдущий блок	
2.	При сопровождении проектов на основе распределённых	3
	реестров с моделью UTXO входом новой транзакции является:	
	1. Баланс аккаунта отправителя	
	2. Хеш всего реестра	
	3. Непотраченный выход предыдущей транзакции	
	4. Номер блока в цепочке	
	При администрировании проектов на основе блокчейн-	3
	платформ какое свойство корректной хеш-функции играет	
	ключевую роль в обеспечении неизменяемости данных?	
	1. Возможность обратного вычисления образа	
	2. Линейная зависимость хеша от входа	
	3. Лавинный эффект при малом изменении входа	
	4. Равенство хешей для схожих сообщений	
١.	При оценке устойчивости распределённых систем в проектах	2
	инновационных финансовых технологий, какова максимальная	
	доля злонамеренных узлов, которую классические	
	византийские алгоритмы способны корректно переносить?	
	1. До 1/2	
	2. До 1/3	
	3. До 1/4	
	4. До 1/5	
5.	При выборе архитектуры для сопровождения проектов в сфере	2
	инновационных финансовых технологий, какое ключевое	
	преимущество обеспечивают решения второго уровня,	
	сворачивающие транзакции в пакеты (rollup)?	
	1. Полный отказ от базового слоя	
	2. Снижение комиссий и нагрузки на базовый слой при	
	сохранении его безопасности	
	3. Увеличение размера блоков базового слоя	
	4. Отказ от криптографии в пользу кеширования	

6.	В администрировании децентрализованных финансовых приложений какую функцию выполняют оракулы? 1. Для генерации приватных ключей 2. Для обеспечения сети электричеством		3
	контракты	емых внешних данных в смарт- фрования сообщений	
7.	При сопровождении преестров каким образотраты»? 1. Запретом на повто 2. Обязательным шиза. Согласованием еднаиболее убедительн	роектов на основе распределённых м предотвращается проблема «двойной рное использование адреса фрованием всех сообщений истории и правилом выбора юй цепочки	3
8.	4. Изменением размера блока каждые сутки Сопоставьте криптографические примитивы с их функциями при использовании в проектах на основе распределённых реестров.		1 2 3 4 Β Γ Б A
	Криптопримитив	Назначение	
	1. Криптографическая хеш-функция	А. Защита от радужных таблиц при хранении хешей	
	2. Цифровая подпись	Б. Конфиденциальность данных	
-	3. Симметричное шифрование	В. Проверка целостности сообщений	
	4. Случайная соль	Г. Аутентификация и неотрекаемость отправителя	
9.	Установите соответствие между моделью консенсуса и её характеристикой при использовании распределённых реестров в финансовых приложениях.		1 2 3 4 B 6 A Γ
	Модель консенсуса	Характеристика	
	1. Доказательство работы	А. Устойчивость при доле злонамеренных узлов ≤ 1/3	
	2. Доказательство доли участия	Б. Требует экономического залога и механизма штрафов	
	3. Византийская устойчивость	В. Существенные энергозатраты на подбор решения	
	4. Доказательство полномочий	Г. Валидация ограничена авторизованной группой узлов	
10.	Дайте определение «распределённого реестра (DLT)» и укажите, какое значение он имеет для построения решений в финансовых технологиях.		Распределённый реестр — это общая база данных, копии которой хранятся и синхронно обновляются у множества независимых узлов, а согласование последовательности записей обеспечивается алгоритмом консенсуса.

11.	Сформулируйте определение «смарт-контракта» и укажите его значение для управления децентрализованными сервисами.	Смарт-контракт — это программа, которую исполняют узлы распределённого реестра, которая детерминированно проверяет условия и изменяет состояние реестра без доверия к отдельным участникам.
12.	Сформулируйте определение «консенсуса» в распределённом реестре, подчеркнув его роль в обеспечении целостности данных.	Консенсус — процесс, при котором узлы в небезопасной сети достигают согласованного порядка операций, соблюдая свойства безопасности
13.	Сформулируйте определение «цифровой подписи», отметив её роль в обеспечении аутентичности и неизменяемости данных.	Цифровая подпись — криптографический механизм, позволяющий владельцу закрытого ключа подтвердить авторство и целостность сообщения, чтобы любой проверяющий по открытому ключу мог убедиться в подлинности.
14.	Дайте определение модели учёта «UTXO» при сопровождении проектов в сфере инновационных финансовых технологий.	
15.	В условиях сопровождения проектов на основе распределённых реестров рассчитайте TPS, если лимит газа блока составляет 30 000 000, средняя транзакция — 50 000 газа, а блок формируется каждые 12 секунд.	в блоке; $600/12 c = 50$)
16.	Для анализа эффективности внедрения решений второго уровня рассчитайте процент экономии, если стоимость операции на L1 составляет 2,50 у.е., а на L2 – 0,08 у.е.	≈ 96,8 % ((2,50 − 0,08)/2,50).
17.	В условиях сопровождения проектов на основе блокчейн- платформ определите, что произойдёт, если транзакция отправлена с максимальной ценой 25 gwei при текущей базовой плате 30 gwei.	плата не опустится ≤ 25 gwei или пока
18.	Для оценки корректности работы финансового приложения укажите, что вернёт запрос на языке Solidity к mapping(address => uint) balances по неинициализированному адресу.	Нулевое значение типа (0 для uint), без
19.	При администрировании смарт-контрактов на Solidity укажите, допускается ли вызов конструктора повторно после его выполнения при создании контракта.	
20.	В проектах финансовых технологий как долго необходимо ждать подтверждения транзакции, если блоки формируются каждые 5 секунд, а глубина подтверждений установлена на уровне 20?	$(20 \times 5 c)$.
21.	При сопровождении финансовых приложений на основе распределённых реестров определите размер платы пользователя за транзакцию при следующих параметрах: baseFee 18 gwei, приоритет 2 gwei, объём газа 21 000.	420 000 gwei (21 000 × 20 gwei) или 0,00042 ETH

6.5. Оценочные материалы для промежуточной аттестации

Фонд вопросов для проведения промежуточного контроля в форме зачета Примерные вопросы к зачету Контролируемые компетенции – ПК-5 – Способен осуществлять административное сопровождение проектов в области инновационных финансовых технологий

№ п/п	Задание	Ключ к заданию / Эталонный ответ
1.	Что такое распределённый реестр и как он обеспечивает доверие без центрального оператора?	Распределённый реестр — это согласованная база данных, поддерживаемая множеством независимых узлов. Целостность записей обеспечивается криптографическими подписями и хеш-связями, а единый порядок операций гарантируют алгоритмы консенсуса. Благодаря этому доверие создаётся без центрального оператора, и участники могут проверять корректность данных самостоятельно.

2.	T.		
	Какую роль играют криптографические хешфункции и Merkle-структуры в доказуемой целостности данных?	Криптографические хеш-функции создают уникальные отпечатки данных и позволяют мгновенно выявлять любые изменения, обеспечивая цепочку блоков неизменяемой. Merkle-деревья агрегируют множество элементов в один корневой хеш и дают возможность проверять включение отдельного элемента без загрузки всего массива. Вместе они формируют компактный и проверяемый механизм целостности, служащий основой доверия в распределённых системах.	
3.	В чём различия между моделями учёта UTXO и аккаунтной, и как они влияют на масштабирование и приватность?	В модели UTXO состояние задаётся набором непотраченных выходов, что позволяет обрабатывать независимые транзакции параллельно и повышает масштабируемость. В аккаунтной модели у адреса хранится баланс и счётчик, а операции изменяют это состояние, что удобно для сложной логики смарт-контрактов. UTXO чаще применяют для платёжных сценариев и приватности, тогда как аккаунтная лучше подходит для универсальных приложений.	
4.	Дайте определение смарт- контракту и опишите его жизненный цикл от разработки до сопровождения.	Смарт-контракт — это программа с детерминированной логикой, исполняемая узлами реестра для проверки условий и изменения состояния. Его жизненный цикл включает анализ требований, проектирование интерфейсов и реализацию с тестированием и аудитом. После развёртывания контракт сопровождается мониторингом, документированием изменений и реагированием на инциденты.	
5.	Перечислите основные подходы к масштабированию (шардирование, второй уровень пакетной обработки, боковые цепи)	Шардирование делит сеть на сегменты и повышает пропускную способность, но усложняет кросс-шардовые операции. Второй уровень сворачивает транзакции в пакеты и разгружает базовый слой, сохраняя его безопасность. Боковые цепи дают независимую среду исполнения, однако не наследуют защиту основной сети и требуют доверия к механизму связи.	
6.	Зачем смарт-контрактам нужны оракулы и какие риски они привносят?	Смарт-контракты не могут напрямую получать внешние данные, поэтому оракулы поставляют им цены, события и другие сведения. Они расширяют применимость контрактов, но вносят риски манипуляций, задержек и отказа доставки. Для снижения угроз применяют агрегирование источников, пороговые подписи и механизмы безопасной остановки.	
7.	В чём разница между консенсусами Proof-of-Work и Proof-of-Stake?	В Proof-of-Work блок создаёт участник, решивший вычислительную задачу, и безопасность обеспечивается затратами энергии. В Proof-of-Stake право зависит от объёма внесённого залога, а санкции за нарушения применяются через конфискацию средств. РоW требует больших ресурсов, тогда как PoS энергоэффективнее и быстрее, но чувствителен к концентрации стейков.	
8.	Что такое «газ» и зачем нужен лимит газа в транзакции?	Газ — это мера вычислительной работы в блокчейне, от которой зависит комиссия за выполнение транзакции или смарт-контракта. Лимит газа задаёт максимальный объём операций, на который согласен отправитель, и предотвращает чрезмерное потребление ресурсов. Он защищает как пользователя, так и сеть от ошибочных или слишком тяжёлых вызовов.	
9.	Зачем нужны мультиподписи и пороговые схемы авторизации?	Мультиподписи и пороговые схемы требуют нескольких подтверждений, что снижает риск компрометации одного ключа. Правило «k из n» позволяет проводить операции даже при недоступности части участников. Такой механизм повышает безопасность и распределяет ответственность между сторонами.	
10.	Чем «боковая цепь» отличается от решения второго уровня, сворачивающего транзакции в пакеты?	Боковая цепь — это независимая сеть со своим консенсусом, которая связана с основной через мост и не наследует её безопасность. Решение второго уровня сворачивает транзакции и публикует данные или доказательства в базовый слой, опираясь на его защиту. Таким образом, боковые цепи дают гибкость, а L2 — предсказуемую безопасность.	
11.	Что такое мемпул и зачем он нужен?	Мемпул — это очередь неподтверждённых транзакций, из которой узлы выбирают операции для включения в блок. Он показывает нагрузку сети и формирует прозрачный рынок комиссий. Пользователи ориентируются на его состояние, чтобы выбрать цену за газ для более	

		быстрого подтверждения.
12.	Зачем нужны require и assert в логике смарт-контрактов?	геquire проверяет внешние условия и корректность входных данных, откатывая транзакцию при нарушении с возвратом ошибки пользователю. Такой механизм защищает бизнес-правила и предотвращает бессмысленные вычисления. assert проверяет внутренние инварианты, которые не должны нарушаться ни при каких корректных входах. Срабатывание assert указывает на логическую ошибку кода и требует немедленного расследования.
13.	Из каких частей состоит блок и что хранит каждая часть?	Блок состоит из заголовка и тела. В заголовке находятся ссылки на предыдущий блок, корневые хеши и служебные поля для проверки целостности, а в теле хранится список транзакций. Хеш заголовка служит уникальным идентификатором блока.
14.	Чем отличается жёсткое разветвление (hard fork) от мягкого (soft fork) в распределённых реестрах?	Жёсткое разветвление (hard fork) вводит правила, несовместимые со старыми, что может привести к разделению сети без обновления всех узлов. Мягкое разветвление (soft fork) лишь ужесточает условия, сохраняя совместимость с прежними проверками. Hard fork требует широкой координации, тогда как soft fork проще внедрить, но он ограничен обратной совместимостью.
15.	Что такое «робономика» и какую роль играют распределённые реестры?	Робономика — это модель экономики, где автономные агенты и киберфизические системы самостоятельно обмениваются услугами и платежами. Распределённые реестры создают проверяемую историю сделок и обеспечивают работу смарт-контрактов без централизованного контроля. Это формирует рынок, в котором машины могут быть полноценными экономическими участниками.

6.6. Шкалы и критерии оценивания по формам текущего контроля и промежуточной аттестации

Шкала и критерии оценивания

Hikwiu ii kpii tepini oqenibunin		
Оценка Критерии оценивания для мероприятий контроля с применением 2-х балльной системы		
«зачтено»	ПК-5	
«не зачтено»	Результаты обучения не сформированы на пороговом уровне	